Discourse in Statistical Machine Translation

نویسندگان

  • Christian Hardmeier
  • Nicolas Hernandez
چکیده

Avertissement Le contenu de ce site relève de la législation française sur la propriété intellectuelle et est la propriété exclusive de l'éditeur. Les œuvres figurant sur ce site peuvent être consultées et reproduites sur un support papier ou numérique sous réserve qu'elles soient strictement réservées à un usage soit personnel, soit scientifique ou pédagogique excluant toute exploitation commerciale. La reproduction devra obligatoirement mentionner l'éditeur, le nom de la revue, l'auteur et la référence du document. Toute autre reproduction est interdite sauf accord préalable de l'éditeur, en dehors des cas prévus par la législation en vigueur en France.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards a discourse relation-aware approach for Chinese-English machine translation

Translation of discourse relations is one of the recent efforts of incorporating discourse information to statistical machine translation (SMT). While existing works focus on disambiguation of ambiguous discourse connectives, or transformation of discourse trees, only explicit discourse relations are tackled. A greater challenge exists in machine translation of Chinese, since implicit discourse...

متن کامل

Discourse-level features for statistical machine translation

The talk will show how the disambiguation of discourse connectives can improve their automatic translation. Connectives are a class of frequent functional lexical items that play an important role in text readability and coherence. Longer-range context is taken into account to learn the signaled rhetorical relations. The labels obtained from a discourse connective classifier are then integrated...

متن کامل

Disambiguating Temporal–Contrastive Discourse Connectives for Machine Translation

Temporal–contrastive discourse connectives (although, while, since, etc.) signal various types of relations between clauses such as temporal, contrast, concession and cause. They are often ambiguous and therefore difficult to translate from one language to another. We discuss several new and translation-oriented experiments for the disambiguation of a specific subset of discourse connectives in...

متن کامل

Automatic Mapping of French Discourse Connectives to PDTB Discourse Relations

In this paper, we present an approach to exploit phrase tables generated by statistical machine translation in order to map French discourse connectives to discourse relations. Using this approach, we created ConcoLeDisCo, a lexicon of French discourse connectives and their PDTB relations. When evaluated against LEXCONN, ConcoLeDisCo achieves a recall of 0.81 and an Average Precision of 0.68 fo...

متن کامل

Using Sense-labeled Discourse Connectives for Statistical Machine Translation

This article shows how the automatic disambiguation of discourse connectives can improve Statistical Machine Translation (SMT) from English to French. Connectives are firstly disambiguated in terms of the discourse relation they signal between segments. Several classifiers trained using syntactic and semantic features reach stateof-the-art performance, with F1 scores of 0.6 to 0.8 over thirteen...

متن کامل

Implicitation of Discourse Connectives in (Machine) Translation

Explicit discourse connectives in a source language text are not always translated to comparable words or phrases in the target language. The paper provides a corpus analysis and a method for semi-automatic detection of such cases. Results show that discourse connectives are not translated into comparable forms (or even any form at all), in up to 18% of human reference translations from English...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013